未炭化物1比表面積500-1800灰分5碘值500-1500四氯化碳35-65
焦油活性炭是一種以煤焦油為原料生產的活性炭。
它具有較大的比表面積和豐富的孔隙結構,因而具有良好的吸附性能。
焦油活性炭常用于以下領域:
1. 氣體凈化:如吸附空氣中的有害氣體、工業(yè)廢氣中的污染物等。
2. 水處理:去除水中的有機物、異味、顏色和重金屬離子等。
3. 溶劑回收:回收工業(yè)生產中使用的有機溶劑。
4. 食品和醫(yī)藥:用于脫色、提純和凈化等工藝。
您是想了解焦油活性炭的生產工藝、應用領域還是其他方面的信息呢?

焦油活性炭的原料通常包括以下幾種:
1. 煤焦油:這是一種重要的原料來源,經過加工和處理可以用于生產活性炭。
2. 生物質:例如木材、果殼(如椰子殼、杏殼、核桃殼等)、秸稈等。
3. 石油焦:石油加工過程中的副產品。
在生產焦油活性炭時,需要對這些原料進行一系列的物理和化學處理,如炭化、活化等,以獲得具有特定孔隙結構和吸附性能的活性炭產品。

焦油活性炭具有多種用途,常見的包括:
1. 氣體凈化:用于去除空氣中的有害氣體,如二氧化硫、氮氧化物、揮發(fā)性有機化合物(VOCs)等。
2. 污水處理:能吸附污水中的有機物、重金屬離子等污染物,以凈化水質。
3. 溶劑回收:回收工業(yè)生產過程中使用的有機溶劑。
4. 食品和飲料加工:用于脫色、除臭和去除雜質,提高產品質量。
5. 工業(yè)廢氣處理:處理化工、制藥、印刷等行業(yè)產生的廢氣。
6. 防毒面具:作為過濾材料,吸附空氣中的有毒物質,保護人員呼吸安全。
7. 黃金提?。涸邳S金開采和提煉過程中用于吸附和回收金離子。

焦油活性炭是一種具有高吸附性能的炭材料,其吸附焦油的原理主要包括以下幾個方面:
1. 物理吸附:活性炭具有豐富的孔隙結構,包括微孔、中孔和大孔。這些孔隙提供了的比表面積,使得活性炭能夠與焦油分子充分接觸。焦油分子在范德華力的作用下被吸附到活性炭的孔隙表面,從而實現物理吸附。
2. 化學吸附:活性炭表面存在一些化學官能團,如羥基、羧基等,它們可以與焦油中的某些成分發(fā)生化學反應,形成化學鍵,從而將焦油分子固定在活性炭表面。
3. 分子間作用力:焦油中的大分子物質與活性炭表面之間存在著分子間的引力,如偶極 - 偶極相互作用、氫鍵等,有助于焦油的吸附。
4. 孔隙填充:焦油分子能夠進入活性炭的孔隙內部,填充孔隙空間,從而達到吸附的效果。
總之,焦油活性炭通過物理吸附、化學吸附、分子間作用力和孔隙填充等多種作用機制,有效地吸附去除氣體或液體中的焦油成分。

焦油活性炭的再生是指通過一系列方法恢復其吸附性能,使其能夠再次使用。以下是一些常見的焦油活性炭再生方法:
1. 熱再生法
- 這是常用的方法之一。將吸附了焦油的活性炭加熱到較高溫度(通常在 600 - 900°C 之間),使吸附在活性炭孔隙中的焦油等物質分解、氣化或燃燒,從而恢復活性炭的孔隙結構和吸附能力。
2. 溶劑再生法
- 使用適當的溶劑(如有機溶劑、酸、堿溶液等)浸泡吸附了焦油的活性炭,使焦油等物質溶解在溶劑中,從而實現活性炭的再生。
3. 生物再生法
- 利用微生物的代謝作用,將吸附在活性炭上的焦油等有機物分解轉化,達到再生的目的。
4. 濕式氧化再生法
- 在高溫高壓和有氧氣存在的條件下,使吸附在活性炭上的焦油等有機物氧化分解。
5. 微波再生法
- 利用微波的能量加熱活性炭,使吸附質脫附或分解,實現再生。
在進行活性炭再生時,需要根據具體情況選擇合適的再生方法,并考慮再生成本、再生效果和環(huán)境影響等因素。同時,再生后的活性炭吸附性能可能會有所下降,需要進行適當的檢測和評估。

臨朐縣海源活性炭廠,是一家從事活性炭生產20年的生產廠家,產品20多個型號,覆蓋不同領域的活性炭使用環(huán)境,產品營銷全國,質量穩(wěn)定如一,初心不改,一切為環(huán)保事業(yè)做出應有的貢獻,始終將青山綠水作為自己產品質量的要求。 地址:山東臨朐縣冶源鎮(zhèn)西圈村
焦油活性炭孔隙結構: 焦油活性炭是由石墨微晶、單一平面網狀碳和無定形碳三部分組成,其中石墨微晶是構成活性炭的主體部分。焦油活性炭的微晶結構不同于石墨的微晶結構,其微晶結構的層間距在0.34~0.35nm之間,間隙大。即使溫度高達2000 ℃以上也難以轉化為石墨,這種微晶結構稱為非石墨微晶,絕大部分活性炭屬于非石墨結構。石墨型結構的微晶排列較有規(guī)則,可經處理后轉化為石墨。非石墨狀微晶結構使活性炭具有發(fā)達的孔隙結構,其孔隙結構可由孔徑分布表征?;钚蕴康目讖椒植挤秶軐挘瑥男∮?nm到數千nm。有學者提出將活性炭的孔徑分為三類:孔徑小于2nm為微孔,孔徑在2~50nm為中孔,孔徑大于50nm為大孔。
焦油活性炭中的微孔比表面積占活性炭比表面積的95%以上,在很大程度上決定了活性炭的吸附容量。中孔比表面積占活性炭比表面積的5%左右,是不能進入微孔的較大分子的吸附位,在較高的相對壓力下產生毛細管凝聚。大孔比表面積一般不超過0.5m2/g,僅僅是吸附質分子到達微孔和中孔的通道,對吸附過程影響不大。 焦油活性炭表面化學性質: 焦油活性炭內部具有晶體結構和孔隙結構,焦油活性炭表面也有一定的化學結構?;钚蕴课叫阅懿粌H取決于活性炭的物理(孔隙)結構,而且還取決于活性炭表面的化學結構。在活性炭制備過程中,炭化階段形成的芳香片的邊緣化學鍵斷裂形成具有未成對電子的邊緣碳原子。這些邊緣碳原子具有未飽和的化學鍵,能與諸如氧、、氮和等雜環(huán)原子反應形成不同的表面基團,這些表面基團的存在毫無疑問地影響到活性炭的吸附性能。X 射線研究表明,這些雜環(huán)原子與碳原子結合在芳香片的邊緣,產生含氧、含和含氮表面化合物。當這些邊緣成為主要的吸附表面時,這些表面化合物就改變了活性炭的表面特征和表面性質?;钚蕴勘砻婊鶊F分為酸性、堿性和中性 3 種。酸性表面官能團有羰基、羧基、內酯基、羥基、醚、等,可促進活性炭對堿性物質的吸附;堿性表面官能團主要有吡喃酮(環(huán)酮)及其物,可促進活性炭對酸性物質的吸附。 修改活性炭孔隙結構: 有機廢氣活性炭是由石墨微晶、單一平面網狀碳和無定形碳三部分組成,其中石墨微晶是構成活性炭的主體部分?;钚蕴康奈⒕ЫY構不同于石墨的微晶結構,其微晶結構的層間距在0.34~0.35nm之間,間隙大。即使溫度高達2000 ℃以上也難以轉化為石墨,這種微晶結構稱為非石墨微晶,絕大部分活性炭屬于非石墨結構。石墨型結構的微晶排列較有規(guī)則,可經處理后轉化為石墨。非石墨狀微晶結構使活性炭具有發(fā)達的孔隙結構,其孔隙結構可由孔徑分布表征。活性炭的孔徑分布范圍很寬,從小于1nm到數千nm。有學者提出將活性炭的孔徑分為三類:孔徑小于2nm為微孔,孔徑在2~50nm為中孔,孔徑大于50nm為大孔。 活性炭中的微孔比表面積占活性炭比表面積的95%以上,在很大程度上決定了活性炭的吸附容量。中孔比表面積占活性炭比表面積的5%左右,是不能進入微孔的較大分子的吸附位,在較高的相對壓力下產生毛細管凝聚。大孔比表面積一般不超過0.5m2/g,僅僅是吸附質分子到達微孔和中孔的通道,對吸附過程影響不大。 有機廢氣活性炭表面化學性質: 環(huán)?;钚蕴績炔烤哂芯w結構和孔隙結構,活性炭表面也有一定的化學結構?;钚蕴课叫阅懿粌H取決于活性炭的物理(孔隙)結構,而且還取決于活性炭表面的化學結構。在活性炭制備過程中,炭化階段形成的芳香片的邊緣化學鍵斷裂形成具有未成對電子的邊緣碳原子。這些邊緣碳原子具有未飽和的化學鍵,能與諸如氧、、氮和等雜環(huán)原子反應形成不同的表面基團,這些表面基團的存在毫無疑問地影響到活性炭的吸附性能。X 射線研究表明,這些雜環(huán)原子與碳原子結合在芳香片的邊緣,產生含氧、含和含氮表面化合物。當這些邊緣成為主要的吸附表面時,這些表面化合物就改變了活性炭的表面特征和表面性質。